

As I write this, I am hoping you and your families are safe and well.

I am sure our life here in England is probably quite similar to yours. Paul and I are striving to maintain some sense of normality with our family during this unprecedented time of guarantine, amidst the enormous challenges this virus has brought upon us all.

We are loving a very unique time with our three children but we miss our extended community and contact with all generations of family, friends and colleagues. Being there for one another, in whatever form, is more important than ever during this time of physical distancing.

As uncertain as the current landscape is, we know that medical experts and teams of professionals around the globe are working around the clock to harness this dreadful virus and develop a vaccine so we can all get back to our lives. And we will get back to our lives. Back to our families, back to work, our routines and our continued commitment to the foundation, with more passion than ever to support the sciences and to heal.

Many of you might have a copy of our book that was created nearly 20 years ago. The title being *Hands and Hearts* with the cover image of committed, passionate, working hands. We look forward to not only being 'in touch' again but also to being with you, 'to touch' again, starting with that simple, heartfelt gesture of a handshake. And, most definitely closely followed by us all raising our glasses together.

Fondly,

Emily Michae Founder

Dear Friends of the Foundation and the Michael Family;

We are thinking of all of you during this unsettling period and hope you and your loved ones are safe and healthy.

The pandemic storm is raging to new highs as I write this. It has caused me to think, even more than I normally do, about the ebb and flow of life.

It's one thing to know people who have had Covid-19. It is even more unnerving to personally know someone who has died from it.

Recently, a friend of ours succumbed to the disease. She was a special, unforgettable woman with a passion for living life to its fullest. Every 4 years, she hosted a ball on her birthday of February 29th. Lisbon, Portugal was the setting this year. She and her husband returned to NY then went on to their home in Nevada where she passed.

Her husband is now showing symptoms and awaiting test results. Dr. Larry Fong, University of California **San Francisco**, a compassionate, caring physician and leading immunotherapy scientist has offered his assistance regarding treatments at one of the nearby UC medical centers.

While coronavirus is top-of-mind, cancer continues. Dr. Fong's report on the significant progress in immunotherapy treatment in prostate cancer appears in the PMF Science Report beginning on page 19. You can also learn more about Dr. Fong's amazing, innovative work from the video on the PMF home page: www.PeterMichaelFoundation.org

At Stanford University Medical Center, Dr. Sanjiv 'Sam' Gambhir, Chairman of Radiology, has made newsworthy progress in his truly pioneering work in ultrasound and photoacoustic imaging of prostate cancer.

Dr. Gambhir wrote to us in September:

" I am happy to announce that after many years the work you helped support on the first transrectal ultrasound + photoacoustic system for imaging prostate cancer based on CMUT array technology is now about to be published in *Science Translational Medicine* (A very high impact journal). There will be some publicity around this work soon. I can't thank you enough for sticking with us through the many years of this concept all the way to pilot testing in patients."

This is a true validation both of our long-term commitment and the effectiveness of this new prostate cancer theranostic (combined diagnostic and therapeutic). Please see the full article in the PMF Science Report beginning on page 22.

From the beginning, Sam has been a genuine inspiration for all of us. It is with great sadness we learned that Sam is battling cancer. He is being treated at Stanford in co-ordination with other world-leading cancer centers.

In recognition of Dr. Gambhir's extraordinary leadership and compassion in medicine, his commitment to Stanford Medicine and cancer research; the Stanford Board of Trustees instituted a fundraising effort to create an endowed professorship and research fund in his honor. Peter Michael Foundation has made a substantial commitment to the endowed professorship.

Continuing our mission of innovation and long-term commitments, at Stars New York last October, Dr. Hedvig Hricak, Chair of Radiology at Memorial Sloan Kettering Cancer Center, proposed a promising, novel combined prostate and breast cancer project.

There are direct links between the two diseases. About 20% of men carry the BRCA gene i.e. the "breast cancer" gene. The presence of the BRCA mutation is indicative of more aggressive cancers with higher incidence of metastasis. Dr. Hricak's proposal is to investigate proven prostate cancer diagnostic innovations, i.e. targeting androgen-signaling pathways, as potential treatments for metastatic breast cancer. Progress made on AR receptor treatment in breast cancer, in turn, then can be applied back to prostate cancer.

Please see the full proposal in the PMF Science Report on page 21. Hedi's presentation at Stars New York was so compelling that two donors agreed to underwrite the project which is now named the Meyers-Labenz Peter Michael Initiative at Memorial Sloan Kettering.

Lastly, Emily Michael, Founder of Peter Michael Foundation, has given approval and designed a Meditation Garden that will be built on a site she selected on the Peter Michael Estate in Calistoga. It will consist of a structure and landscaping approached by a foot bridge over a seasonal stream. It will be open to all visitors but will be dedicated to those friends of the Family, the Winery and the Foundation who are no longer with us. Construction was delayed by last year's fires and now by the pandemic. We hope it will be completed by the end of this year.

While difficult now, we know the storm will pass and some good will come of it. Hopefully, we'll be better prepared institutionally and be kinder and gentler to each other individually.

On behalf of Paul and Emily, the Winery and the Foundation, we all are deeply grateful for your support, encouragement and engagement. It is all of you that help us help others.

(1) altes

Walter B. Menzel Founding Executive Director

Friends of the Foundation

Rae and Bill Dyer Omaha, Nebraska

Our first exposure to Peter Michael wines

was when a good friend and long-time patron of the winery started sharing wine with us. We instantly fell in love with all of them, and were patiently on the waitlist until we received our own allocation. We attended the first Peter Michael Stars event at Côte Deux Mille

in July, 2006. We were so amazed by the incredible views, and enjoyed learning which vineyards were designated for certain labels. It was a fabulous event with a wonderful group of patrons, all for a most worthy cause. We have been enjoying the wines and supporting the Peter Michael Foundation ever since.

"... a wonderful group of patrons, all for a most worthy cause."

As many people have been touched by cancer in their lives, so have we through family members and friends. We have seen how cancer can impact the lives of not only those affected, but also those close to them. Because of this, we wholeheartedly respect and support the work of the Peter Michael Foundation in their quest to identify, treat, and manage the disease of prostate cancer. The Foundation's efforts to get their message out has resulted in great partnerships and the accomplishment of fundraising goals to support their cause.

Since our first Peter Michael Stars event in 2006, we have had the pleasure of attending two additional Stars events in Knights Valley, a recent inaugural Stars event in Chicago, as well as co-hosting our first Omaha Stars event benefitting both the Peter Michael Foundation and the Buffett Cancer Institute. We have been proud to involve our children in a few of these to demonstrate the importance of giving back to our communities and the impact that can be made. We hope to participate in upcoming Stars events in Omaha, as well as to continue to support the Foundation in various ways.

3

Cheers! Rae and Bill Dyer

Bill, Rae, and Emily Michael | Stars Omaha 2018

Larry Thompson & Gary Thompson

I to r: Nick Salpekar, Jared York, Kevin York, Kimberly Anderson, Jennifer Gibson, Carla York

Paul & Amanda Mayberry

Yovi Stanchevska & Sean Tygrett

Susan & Chris Mangum

STARS | ATLANTA

Kristyn Emenecker & John Goodson

I to r: Dzung Nguyen, Gloria Skinner, Floyd Skinner, Tom & Melissa Maner, Jimmy & Lisa Todd

Sheay Noel & Shawn Bedford

Lisa & Duane Price

Jenny & Mark Ling

STARS BY DAY | KNIGHTS VALLEY

I to r: Scott Rodde, Walter Menzel, Karlee Steele, Tom Carlson, Dave Carlson, Peter Mondavi, Jr.

Audrey & Rip Gerber

Aida Bogosian

Shannon Wass & Dan Kelmenson

I to r: Marin Dennis, Paul Michael, Elliot Michael, Michele Grasso-Dennis

Reed Glick & Stephanie Cadwell

Tracy & Mark Evans

Sue-Marie & Ron Haber

David & Loretta Doon, Dick & Beverly Kiehl

Tina & Ron Caldwell

Grant & Mary Wease

Christian Fair, Ellen Fair, Jorge Kizeriehl

Jacqueline Towers-Perkins

Michael Berthiaume & Karen Carr Ramsey

Scott & Mary Egan

Luc Morlet, Rich Woodson, Chris Bello

STARS | CHICAGO

clockwise from top: Jillian & Jeff Sagan, John & Nada Christopher, Phil & Debbie Lukowski, Paul & Hazel Manzano

I to r: Mike & Mandy Petrizzo, Molly & Nathan Williamson, Bambi & Anthony Tesmond, Patty & Scott Multack

Ray & Laura Pirrello

Karen McCarthy, Laura Pirrello, Linda Colander

I to r: Walter Menzel, Andrea Kostanecki, Martina De Santis, Emily Michael, Lee Wolen, Jenny Koehler, Scott Rodde

I to r: Jeff & Carol Pape, Dan & Deb Marszalek, Mike & Maureen Parilla, Janet & Rick Remiker

Cecil & Sheryl Flamer, Barbara & Irwin Weinberg

Jackie & Claire Dyer

Jim Schlosser

Dianne Ament

I to r: Tom & Cynthia Manos, Dick & Andrea Burridge, Sue & Brian Griffith

Kirk & Laura Admire

I to r: Scott Horowitz, Jeff Ehrlich, Caryn & Leigh Weinberg

Marilynn & Carl Thoma

Angie Martino

Henry Davis & Christina Fazzone

I to r: Aliza & Frank Messana, Joe & Marisol Siwek, Mandy & Charlie Johnson, Suzi Hunter, Mike Siwek, Larry & Eileen Wojcik

David Slosburg

Jacques Pépin & Dr. Hedvig Hricak

STARS | NEW YORK

Sir Peter Michael & Sy Sternberg

I to r: Emily Michael, Drew Nieporent, Kelley Jones, Jim Bailey

Jeff Mayer, Howard Haber, Bob Hay

Maral & Sarkis Jebejian

Linda Mitchell, Sheree Chambers, Paulette Koch

Joia Cardinale-Haber & Jacques Pépin

Victor & Fabe Gallo

Chris Ehrlich, Adam & Tammy Sloan

I to r: Claudine Pépin, Emily Michael, Jacques Pépin, Paul Michael, Joanne & Tom Eakin

I to r: Christopher Sharp, Jon Hitchon, Grant Lembke, Diane & Anthony Lembke

Jacques Pépin & Sir Peter Michael

Kimberley

l to r: Mariko LeBaron, Claudine Pépin, Diana Galik, Jacques Pépin, Deb Jaroch, Anna Danchak

Chloe Zale & Laurie Sternberg

Sheri & Jimmy Rosenfeld

Matt Hoyle, Drew Nieporent, Walter Menzel

STARS | SAN FRANCISCO

Doug Brien, Michael Chang, Sam Hodges

Alison & Marc Chaput, Chara Burnett, Evan McCullouch

Michael Dorf, Elizabeth Yee, Caroline Loewy, Gregg Alton

Stephanie & Mark Breitbard, Allison Abta

Jon & Joanne Goldstein

Mike & LouAnn Eagle

Nima Farzan & Chris Ehrlich

Matt & Yelda Collier

Ron & Allison Abta

Eliot & Cynthia Fried

Paul & Ashley Dalzell, Valerie & Tim Houts

Ryan Gilbert, Allen Weinberg, Jurgen van der Vyfer

Kate & Jeff Perkins

Vishal Grover

Amir Larijani, Matt Zaheri, Pantea Vesal

Phil Black, Carol & Bob White

IS DEEPLY GRATEFUL FOR THE GENEROSITY AND SUPPORT OF THE FOLLOWING

> Please bring any errors or omissions to our attention and we will correct.

2019 SUPPORTERS OF PETER MICHAEL FOUNDATION

STARS VOLUNTEERS

Dawn Beaver Kinsey Birch Bea Cleveland Karen Fraser Andrea Kostanecki Michelle McKechnie Gabriela Shultz Kathrvn Soter Jennifer Young

IN-KIND SUPPORTERS

Atlanta Food & Wine Festival Auction Horizon Chef Colin Bedford Bewildered Pig Chefs Rupert & Carrie Blease Boka Restaurant Group Bonhams Bouchon Bakery Burning Daylight Productions Ron Cecconi Central Kitchen The Fearrington House Dr. Lawrence Fong Freeman Vineyard & Winery Dr. Sanjiv 'Sam' Gambhir Il Molino di Grace Chef Steven Greene Dr. Hedvig Hricak Health-Ade Kombucha Chef Peter Jin Chef Austin Johnson Michael Kang Chef Chris Kollar Kollar Chocolates Mark & Lori Lesperance Loews Atlanta Longoven Team Lord Stanley Matthew's Jewelry Store Chef Thomas McNaughton Peter Michael Winery Luc & Jodie Morlet **Morlet Family Vineyards**

Ne Timeas Restaurant Group Drew Nieporent Oenotri Napa O'Melveny & Myers Ovster Girls Claudine Pépin Jacques Pépin Chef Tyler Rodde Chef Steven Satterfield Somerset Chicago Tannery Bend Beerworks TK Restaurant Group Chef Janelle Weaver David White Wild Ink Chef Lee Wolen Viceroy Chicago

IN MEMORY OF

In Memory of Steve Bergren In Memory of Margaret Rozzi De Santis In Memory of Dan G. Elmore In Memory of Edith & Leo Multack In Memory of Bill Nolan In Memory of Erik A. Noteboom

IN HONOR OF

In Honor of Kevin White In Honor of Mark A. MacLennan In Honor of the work of Dr. Sam Gambhir

2019 SUPPORTERS

Ron & Allison Abta Richard Adams Kirk & Laura Admire Gregg Alton & Caroline Loewy Bradley A. & Dianne Ament Anonymous James N. Bailey & Kelley Jones Anthony & Shannon Balloon Robert C. & Terrye Bellas, Jr.

continued next page

2019 SUPPORTERS OF PETER MICHAEL FOUNDATION

Craig Bergstrom Shawn Bedford Jon R. & Kate A. Berquist Michael Berthiaume Philip Black & Brigitte Sandquist Aida Bogosian Andy & Joanne Botka Mark & Stephanie Breitbard Doug Brien Aimee Brown Richard M. & Andrea Burridge Ron Cadwell Robert & Andrea Callan Dave & Jackie Carlson Thomas A. Carlson & Karlee Steele Joseph D. & Leah M. Carroll Sheree Chambers Michael Chang Marc & Alison Chaput Mark Charkin Joy Chen John A. & Nada Christopher Phillip & Dita Ciaccio Alexandra Cleveland Randall C. & Cynthia A. Clifton Linda Colander Matthew D. & Yelda Collier Nicole Cox Thomas & Cindy Daly Paul & Ashley Dalzell Henry Davis & Christina Fazzone Eduard de Guardiola & Missy Bridgers Dean Dennis & Michele Grasso-Dennis Christopher & Jennifer DeRosa Michael & Doris De Santis Sid & Dawn Dinsdale Paul Dohertv David & Loretta Doon Michael Dorf & Elizabeth Yee Andrew J. Dudley James D. Duvall Alex & Jackie Dyer Claire Dver William & Rae Dyer Mike & LouAnn Éagle Tom & Joanne Eakin David J. Eckert Scott & Mary Egan Chris & Sara Ehrlich George S. & Jeane Elliott Beverly M. Elmore Mark & Tracy Evans

Ellen I. Fair Nima Farzan Peter D. & Joanne Fischer Doug & Caroline Fisher Justin & Lauren Fishner-Wolfson Cecil & Shervl Flamer Carolyn Betts Fleming Karen Fraser Eliot & Cvnthia Fried Michael & Armelle Futterman Nick Gabaldon Milan & Diana Galik Victor & Fabe Gallo Alison L. Gardner Robert W. & Carlotta Garthwait, Jr. **Rip & Audrev Gerber** Ryan & Nicki Gilbert Gary Goldberg Jon & Joanne Goldstein Jeffrev A. Gonvo John Goodson & Kristyn Emenecker Dave & Carolyn Gould Brian & Sue Griffith Vishal Grover & Pantea Vesal Howard Haber & Joia Cardinale-Haber Ron & Sue-Marie Haber Haffenreffer Family Fund Peter Hames Peter Havas David & Melanie Hecker Bill Henry & Erin MacLennan Henry & family David Hibbs Jonathon & Tijana Hitchon Samuel Hodges Ned Holmes Scott Horowitz Tim & Valerie Houts Robert Howard Jeffrey Hund & Chrissy Essary Suzanne G. Hunter Michael Jacobs Chris & Deb Jaroch Sarkis & Maral Jebejian David & Linda A. Jenkins Charles & Mandy Johnson Scott & Debbie Kay Dan Kelmenson & Shannon Wass Steven & Rachel Kent Dick & Beverly Kiehl James Knight Paulette Koch Michael & Shelly Kohlsdorf

2019 SUPPORTERS OF PETER MICHAEL FOUNDATION

Sarah Kowalczyk Chad Labenz & Michael Meyers James E. & Diny Landen Matt & Mariko LeBaron Anthony & Diane Lembke Grant Lembke John Leonard Mark & Lori Lesperance Mark & Jenny Ling Benjamin Livesey Lies Ludwig Philip J. & Debbie Lukowski Greg & Lily MacLennan Julie Macrae Jay & Laurie Mandelbaum Thompson & Melissa Maner Christopher D. & Susan Mangum Thomas G. & Cynthia Manos Paul & Hazel Manzano Dan & Deb Marszalek Scott & Andrea Martin Paul & Angie Martino Paul & Amanda Mayberry Stephen & Karen McCarthy Evan McCulloch Jessie Barker McKellar Foundation Bart & Cynthia McLean Walter B. Menzel Frank & Aliza Messana Michael E. Mevers & Chad Labenz Geoffrey Meyerson Linda T. Mitchell Cristina Maria Morgan David & Christina Morrissev Jane Mudge Scott M. & Patricia Multack William J. Newell & Leslev Stolz Dzung Nguyen Janice Nicol Sheay Noel Timothy & Mary B. Ord Jeffrey & Carol Pape Michael S. & Maureen Parilla Jeff & Kate Perkins Michael J. & Mandy Petrizzo Raymond & Laura Pirrello Steven K. & Alison Poteracki Duane & Lisa Price Peter & Gayle Radtke Karen Carr Ramsav Rick & Janet Remiker Joseph A. & Hyunhee Romano

James E. & Sheri Rosenfeld Jeff & Jillian Sagan James W. & Barb Schlosser Gregory R. Schnackel **Robert Schooler** Sexton Family Foundation Anand Shah Joseph & Marisol Siwek Flovd & Gloria Skinner Paula Skokowski Adam D. & Tammy Sloan David & Martha Slosburg Paul Song Adam & Anne Starnbach Sy & Laurie Sternberg Josephine Storch Tom & Debbie Stringfellow Thomas G. & Mary Stubbs Michael Sturner Paul & Kimberley Tanico Anthony & Bambi Tesmond Michael & Judi Theriault Mark & Kathy Thies Carl D. & Marilynn Thoma Larry D. Thompson Toeniskoetter Family Foundation James C. & Lisa Todd, Jr. Chris & Michelle Tydus Sean R. Tygrett & Yovi Stanchevska James L. Tvree David Wadhwani Martha F. & Thomas F. Walker Foundation David & Molly Watkins Grant & Mary Wease Allen Weinberg Irwin & Barbara Weinberg Leigh & Carvn Weinberg Cynthia & David Weinert Robert M. & Carol White Nathan & Molly Williamson Jerald & Debra Wiskus David Wisland Larry & Eileen Wojcik Khara Woodson Carl E. Wynn Foundation Cassie Yen Jared & Carla York Kevin York Mathew & Candace Zaheri David G. & Vicki Zurkowski

PMF UPDATE **Stars Dinner Events**

Within all government guidelines, we hope to re-instate Stars dinners in the second half of 2020. When and if this happens, we will be consulting with medical professionals to develop protocols, most likely including screening, in order to conduct smaller gatherings while protecting the health and safety of all present.

Conditional planning is moving forward on three events.

Stars Knights Valley

August 1, 2020 at Peter Michael Winery Chef/Owners Kyle & Katina Connaughton of Single Thread 🕄 🖓 🖓

Stars New York

October 21, 2020 at **Restaurant DANIEL Chef Daniel Boulud**

Stars Miami

Originally April 3, 2020 to be re-schedule for later in Fall. Chefs Norman Van Aken, Brad Kilgore, Cindy Hutson, Michael Schwartz, Devin Braddock

Stars Chicago & San Francisco

To Be Determined

We Need You **NOW MORE THAN EVER!**

As we regroup to provide our generous supporters with the kinds of personal and unique PMF-led celebrations of food, wine and medical advances in the treatment of prostate cancer, those programs we support continue on a daily basis.

Due to the mandatory shutdowns, our 2020 revenue is dramatically reduced. We have applied for the SBA EIDL and PPP programs with no success to date.

If you would be able to donate now at your 2019 level or at a level that is comfortable for you, we would be very grateful.

With your help, neither will we.

Please use the enclosed return envelope or email walter@petermichaelfoundation.org if you wish to donate appreciated stock, IRA assets or donor advised funds.

Again, it is all of you that help us help others.

Thank you so very much!

Cancer does not stop – pandemic or no pandemic.

UCSF Helen Diller Family Comprehensive **Cancer** Center

Principal Investigator Lawrence Fong. M.D. Efim Guzik Distinguished Professor in Cancer Biology Leader, Cancer Immunotherapy Program

Peter Michael Foundation Fellow: Serena S. Kwek, Ph.D.

PIONEERING IMMUNOTHERAPY RESEARCH TO IDENTIFY RESPONDERS TO TREATMENT

INTRODUCTION:

Immunotherapy with immune checkpoint inhibitors targeting PD-1 is now an established treatment in many types of advanced cancer including melanoma, kidney cancer and non-small cell lung cancer. In prostate cancer, the frequency of responses to this treatment is much lower, although there are patients with dramatic responses. Our laboratory is focused on why some patients respond and other do not. We are also carrying out clinical trials to combine immune checkpoint inhibitors with other types of cancer therapies to determine if the combination can improve efficacy of current cancer treatment in prostate cancer as well as study the effect of immunotherapy on immune cells in the patients.

CLINICAL TRIALS:

- 1. Pembrolizumab in Combination With Intratumoral SD-101 Therapy
- 2. Pembrolizumab in Metastatic Castration Resistant Prostate Cancer (mCRPC) With or Without DNA Damage Repair Defects
- 3. Neoadjuvant Atezolizumab in Localized Prostate Cancer Given Before Radical Prostatectomy
- 4. Nivolumab with Novel Combinations in mCRPC

OBJECTIVES:

- 1. Improve efficacy of immunotherapy by combination therapy versus monotherapy in mCRPC patients.
- 2. Identify immune biomarkers before treatment that can potentially enable the selection for cancer patients that will benefit from the treatment.
- 3. Study immune pathways affected by the tumor microenvironment and find potential therapeutic targets.

APPROACH:

We are using new laboratory approaches that allow us to resolve the immune response at the individual cell level to study blood and cancer tissues from patients. These techniques include:

- 1. Mass Cytometry (Cytof) to measure the expression of up to 50 protein markers on single immune cells. 2. Single cell RNA sequencing to measure RNA expression of immune markers and
- identify different immune cells.
- 3. T cell receptor (TCR) sequencing to determine clonal expansion of TCR on lymphocytes which will indicate that lymphocytes have encountered antigens and undergone activation and proliferation.

PROGRESS:

Together with the help of bioinformaticians, we are able to observe unique immune populations and states that we did not know previously existed. Figure 1 shows immune populations in the prostate tumor microenvironment identified by single cell RNA sequencing. We have also that T cells that recognize the same targets are expanded in tumors compared to normal tissues. Armeed with this knowledge, we are now determining the function of these cells and what mechanisms may be turning them on or off in the cancer. In doing so, we will define novel therapeutic targets that should improve the rates of response to cancer immunotherapy.

Figure 1. Immune cells identified by single cell RNA sequencing in prostate cancer tissues.

Memorial Sloan Kettering Cancer Center

Principal Investigator Hedvig Hricak, M.D., Ph.D., Dr. h.c. Chairman, Department of Radiology Carroll and Milton Petrie Chair Professor, Gerstner Sloan Kettering Graduate School of Biomedical Sciences Professor of Radiology, Cornell University

MEYERS-LABENZ PETER MICHAEL INITIATIVE at Memorial Sloan Kettering

Crossing Over: Utilizing Prostate Cancer Diagnostic Innovations to Aid in the Diagnosis and Treatment of Breast Cancer

Similarities Between Prostate Cancer and Breast Cancer Allowing Knowledge Feedback

Prostate and breast cancer share several important similarities in terms of risk factors, drivers of tumor growth, and treatment strategies. Both tumor types have an association with the BRCA gene, and for both, the presence of a BRCA mutation is often associated with more aggressive disease. The assessment of the risk of prostate cancer has benefitted from testing for BRCA mutations, which was pioneered in the field of breast oncology. As a result, the breast cancer screening guidelines have been adopted for men with prostate cancer with a family history of BRCA1/2 mutations. Genetic screening is now part of baseline evaluation for men diagnosed with prostate cancer supported by the NCCN Guidelines for Prostate Cancer Early Detection.

Furthermore, most breast and prostate cancers are hormone-sensitive tumors. Most prostate cancers are androgen (male hormone) sensitive, while estrogen (female hormone) is the key driver in the most common type of breast cancer. Targeting the androgen-signaling pathway has been and remains central to prostate cancer management. However, the androgen receptor (AR) is also present in 70-90% of breast tumors and may be the only hormone receptor present in more difficult-to-treat populations, such as those with triple-negative breast cancer. AR-targeted PET imaging was developed to select prostate cancer patients eligible for AR therapy. We are proposing to use this technique to select patients with advanced breast cancer who could benefit from AR-targeted treatment. Targeting AR is an evolving field with new therapies in development that may ultimately be used for the treatment of both breast and prostate cancers. These therapies could be the key to better understanding and treating patients with aggressive metastatic breast cancer.

In clinical trials of patients with breast cancer, testing for AR expression through traditional invasive procedures, such as biopsy, has produced variable results. Identifying minimally invasive methods for effectively evaluating the presence of AR, the function of this receptor, and a patient's response to therapy is critical, particularly in cancers with characteristically aggressive natural histories such as triple-negative breast cancer and breast cancers no longer responsive to anti-hormone therapy.

The proposed pilot study would evaluate the feasibility of using AR-targeted imaging (18F-FDHT-PET/CT) as a noninvasive biomarker of AR expression in patients with advanced breast cancer. The goal is to develop a non-invasive method to better identify AR and thus aid the selection of breast cancer patients and the assessment of treatment response in trials of new antiandrogen therapies. Moreover, the cross-over application of 18F-FDHT could prove transformative by *non-invasively* identifying those patients with advanced breast cancer who are most likely to benefit from AR-targeted therapy in routine clinical care. Finally, since targeting the AR axis is an evolving field with novel therapies continually in development, the ¹⁸F-FDHT PET/CT approach developed in this current project may ultimately lead to better treatment selection for both breast and prostate cancers.

STANFORD CANCER INSTITUTE

Stanford University Medical Center

Principal Investigator Sanjiv Sam Gambhir, M.D., Ph.D. (above left) Virginia and D. K. Ludwig Professor of Cancer Research Chair, Department of Radiology Professor by courtesy, Departments of Bioengineering and Materials Science & Engineering Director, Molecular Imaging Program at Stanford (MIPS) Director, Canary Center at Stanford for Cancer Early Detect

Peter Michael Foundation Fellow: Raj Kothapalli, Ph.D. (right photo above) Idan Steinberg, Ph.D. (pictured above with Sam Gambhir)

"I am happy to announce that after many years the work you (the PMF) helped support on the first transrectal *ultrasound+photoacoustic system for imaging prostate cancer* based on CMUT array technology is now about to be published in Science Translational Medicine (A very high impact journal). There will be some publicity around this work soon.

I can't thank you enough for sticking with us through the many years of this concept all the way to pilot testing in patients.

THANK YOU SO MUCH."

Sincerely, Sam Gambhir

STANFORD CANCER INSTITUTE

Copyright © 2019 The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim

Government Works

to original U.S.

CANCER IMAGING

Simultaneous transrectal ultrasound and photoacoustic human prostate imaging

Sri-Rajasekhar Kothapalli^{1,2,3}, Geoffrey A. Sonn⁴, Jung Woo Choe⁵, Amin Nikoozadeh⁵, Anshuman Bhuyan⁵, Kwan Kyu Park⁵, Paul Cristman⁵, Richard Fan⁴, Azadeh Moini⁵, Byung Chul Lee⁵, Jonathan Wu⁴, Thomas E. Carver⁶, Dharati Trivedi⁴, Lillian Shiiba⁴, Idan Steinberg¹, David M. Huland¹, Morten F. Rasmussen⁵, Joseph C. Liao⁴, James D. Brooks⁴, Pierre T. Khuri-Yakub⁵, Saniiv S. Gambhir^{1,7}*

Imaging technologies that simultaneously provide anatomical, functional, and molecular information are emerging as an attractive choice for disease screening and management. Since the 1980s, transrectal ultrasound (TRUS) has been routinely used to visualize prostatic anatomy and guide needle biopsy, despite limited specificity. Photoacoustic imaging (PAI) provides functional and molecular information at ultrasonic resolution based on optical absorption. Combining the strengths of TRUS and PAI approaches, we report the development and bench-to-bedside translation of an integrated TRUS and photoacoustic (TRUSPA) device. TRUSPA uses a miniaturized capacitive micromachined ultrasonic transducer array for simultaneous imaging of anatomical and molecular optical contrasts [intrinsic: hemoglobin; extrinsic: intravenous indocyanine green (ICG)] of the human prostate. Hemoglobin absorption mapped vascularity of the prostate and surroundings, whereas ICG absorption enhanced the intraprostatic photoacoustic contrast. Future work using the TRUSPA device for biomarker-specific molecular imaging may enable a fundamentally new approach to prostate cancer diagnosis, prognostication, and therapeutic monitoring.

INTRODUCTION

Prostate cancer (PCa) is the most common nonskin cancer among men. More than 1.2 million cases are diagnosed worldwide each year, most often using the standard diagnostic approach in which an abnormal digital rectal exam or elevated prostate-specific antigen (PSA) in the blood prompts a transrectal ultrasound (TRUS)-guided prostate biopsy, where needles are placed blindly into the prostate because of an inability to reliably image PCa on US (1, 2). This approach leads to overdetection of indolent tumors of little clinical relevance and underdetection of some aggressive cancers (2). To address this clinical need, emerging in vitro diagnostic as well as in vivo imaging technologies have focused on detecting reliable biomarkers of PCa with high sensitivity and specificity (3–6), including three-dimensional (3D) TRUS-based imaging strategies for differentiating malignant prostate tissue using elastography (6) and angiography (7, 8). Among these, magnetic resonance imaging (MRI)-guided targeted TRUS biopsies tended to provide higher detection rate for clinically relevant PCa (9). Molecular imaging could further improve PCa care by allowing more accurate biopsies, and better assessment of tumor grade and aggressiveness, and help choose optimal management option (active surveillance, surgery, focal, or radiation therapy) for both clinically relevant and insignificant cases. Toward this goal, molecular imaging techniques such as hyperpolarized ¹³C MRI for mapping metabolic changes of PCa (10)

and positron emission tomography (PET) radiotracers for targeting PCa biomarkers (prostate-specific membrane antigen) (11) are being translated and evaluated in the clinic. However, MRI and PET are not suitable for frequent screening, monitoring, or real-time biopsy guidance due to their limited availability, high cost, and use of ionizing radiation in PET.

TRUS is nonionizing, inexpensive, portable, and widely available and is the current gold standard for guiding prostate biopsy. Although TRUS alone is not sufficient for reliable imaging of PCa, it is an ideal platform to integrate relevant molecular imaging strategies that could improve PCa visibility. Photoacoustic imaging (PAI) is a quintessential nonionizing method to pair with TRUS because they both share the same detection platform, and PAI provides complementary functional and molecular optical contrasts of deep tissue (up to 12 cm) with a submillimeter ultrasonic spatial resolution (12, 13). Hemoglobin absorption enabled high-contrast PAI of blood vasculature, associated angiogenesis, oxygen saturation, and total hemoglobin concentration (13–16); moreover, PA molecular imaging strategies that specifically target cancer biomarkers have been demonstrated to improve both diagnostic sensitivity and specificity in preclinical cancer models (17, 18). Over the past decade, PAI has evolved as a multiscale imaging technology, enabling in vivo imaging of structures ranging from organelles to organs (13), and has been translated to clinical studies by adapting existing clinical US devices for breast (19-21) and ovaries (22) to simultaneously enable PAI by attaching light guides to these devices. PAI studies on prostate had long been limited to animal imaging (23-25), such as imaging of implanted brachytherapy seeds inside the canine prostate (25); these were recently extended to clinical prostate imaging, wherein a single-wavelength (756 nm) PAI was performed for identifying a neurovascular bundle during invasive radical prostatectomy (26) and for imaging angiogenesis of prostate tumors during transrectal imaging of three patients with PCa (27, 28). Although these studies are encouraging, developing a transrectal device that compactly integrates

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

colored polydimethylsiloxane (PDMS) lens coating on the CMUT array provides electrical insulation, mechanical stability, and eleva-Here, we report an integrated spectroscopic TRUS and PA (TRUSPA) tional focusing (fig. S5) (38). As shown in fig. S1, a tunable nanosecond laser (Opotek Inc., 10-Hz pulse repetition rate, 5-ns pulse width, 680- to 950-nm wavelength range) was coupled to the fiber optic bundle of the TRUSPA device to deliver light deep into the prostate from different angles (39). A PC-based US imaging platform (Verasonics Inc.) was synchronized with the laser firing for an interleaved US and PA data acquisition and reconstruction using delayand-sum beamforming (fig. S6). The TRUSPA system displays B-mode US (grayscale), PA (red color scale), and co-registered US and PA images in real time at 10 frames per second (fps) (movie S1).

both US and optical components for in vivo deep-tissue molecularspecific multispectral PAI of the prostate is a key challenge. device built using a relatively new class of miniaturized capacitive micromachined ultrasonic transducer (CMUT) arrays. We fully characterized the instrument and validated using tissue-mimicking phantoms, in vivo mouse models of PCa, ex vivo intact human prostates, and in vivo human prostate transrectal imaging (n = 20), including first-in-man contrast-enhanced prostate imaging using intravenous administration of the U.S. Food and Drug Administration (FDA)-approved indocvanine green (ICG) contrast agent (n = 10). Compared to the wide use of piezoelectric transducers in conventional US imaging, our CMUTs are designed and fabricated in-house using microelectromechanical systems (29, 30), and offer advantages **Evaluation of the integrated TRUSPA system** such as wide bandwidth, improved signal-to-noise ratio (SNR) due to Analysis on pulse-echo measurements from the PDMS-air interface for all 64 CMUT elements demonstrated that 6 elements lost wirebonding contact during the PDMS encapsulation process, and that there was <1% variation in the PDMS thickness across all CMUT

direct or proximal bonding with application-specific integrated circuits (ASICs), ease of fabricating large 1D (linear) as well as 2D arrays with 500 μ m thickness (31–36), and high PA depth sensitivity (37). elements (fig. S5). We characterized the US field of the TRUSPA device using both Field II simulations (40) and a calibrated hydro-RESULTS phone (Onda HNP-0400) and measured ~2.5 MPa output focal We developed the TRUSPA device by tightly integrating a custompressure at the optimal bias voltage settings of 90-V DC and 30-V made fused silica-silica fiber optic light guide and a custom-designed AC (figs. S7 and S8). Analysis of pulse-echo reflections from a flat printed circuit board (PCB) that bonds a linear CMUT array to four metal target in immersion demonstrated that the TRUSPA device ASICs (Fig. 1 and figs. S1 and S2). Design, description, and characterhas a center frequency of 5 MHz and a 6-dB fractional bandwidth of about 80% (fig. S5D). The TRUSPA device provided optical fluence ization of the CMUT array (64 elements, 5-MHz center frequency in immersion) are presented in table S1 and figs. S3 and S4. A grayof $\sim 10 \text{ mJ/cm}^2$ on the tissue surface, which is well within the American

Fig. 1. Schematics and photographs of TRUSPA imaging of the human prostate. (A) Schematic representation of transrectal imaging of prostate (P) using the TRUSPA device. (B) Schematics of the distal end of the TRUSPA device and its cross section showing key components. PCB, printed circuit board; PDMS, polydimethylsiloxane; CMUT, capacitive micromachined ultrasonic transducer array; ASICs, application-specific integrated circuits. (C) Photograph of the TRUSPA device with a 23-mm scale bar. (D) Magnified photograph showing the distal end of the device that is inserted into the rectum of the patient. The three dark lines around three sides of the device are the output end of the optical fibers that deliver light into the prostate from three different planes [the red colored planes shown in (B)]. The device is encapsulated with a gray-color PDMS lens (yellow-dotted rectangular box) above the CMUT surface to achieve elevation focusing. (E and F) Images of the front (E) and back (F) sides of the custom-made PCB, underneath the PDMS lens, facilitating close bonding of the CMUT array with four ASICs. Figures S1 to S3 provide complete details of the TRUSPA imaging system.

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

National Standards Institute (ANSI) safety limit of 30 mJ/cm² at 800-nm wavelength (41). We evaluated the deep-tissue imaging capabilities of the TRUSPA device using a variety of biological tissue environments, including surgically removed human prostates. First, we demonstrated high geometric uniformity and co-registration accuracy of US as well as PA modes of the TRUSPA device by imaging a custom-made structural phantom (Fig. 2). The 10% intralipid, 1% agar, and 0.1% India ink-based phantom consisted of nine fishing wire targets (0.3 mm diameter) placed on and off axis at different depths and orientations inside the homogeneous background mimicking optical properties of prostate tissue with absorption and reduced scattering coefficients, respectively ($\mu_a = 0.1 \text{ cm}^{-1}$ and $\mu_{s}' = 10 \text{ cm}^{-1}$) (Fig. 2, A and B) (42). All wires generated US signal due to acoustic impedance mismatch with respect to the background, although some wires that were painted black absorbed photons and generated a PA signal (Fig. 2, C to E). We then imaged the phantom through a ~2.5-cm-thick porcine tissue (boneless pork loin), to further increase scattering and heterogeneity, and demonstrated that all wire targets could still be imaged (Fig. 2, F to H). PA

STANFORD CANCER INSTITUTE

¹Molecular Imaging Program at Stanford and Bio-X Program, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA. ²Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA. ³Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. ⁴Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA. ⁵Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA. ⁶Edward L. Ginzton Laboratory, Center for Nanoscale Science and Engineering, Stanford University, Palo Alto, CA 94305, USA. ⁷Department of Bioengineering and Department of Materials Science & Engineering. Stanford University School of Medicine, Palo Alto, CA 94305, USA. *Corresponding author. Email: sgambhir@stanford.edu

data analysis on wire targets 1 and 9, at depths of 37 and 52 mm, respectively, from the surface of the porcine tissue, demonstrated SNRs of ~22 and 13 dB, axial resolutions of 0.32 and 0.34 mm, and lateral resolutions of 0.8 and 1.1 mm, respectively (Fig. 2, I to L).

Next, using fiducial tubes of blood or ICG placed in the mid (through the urethral opening) and anterior regions of excised human prostates, we demonstrated that the TRUSPA device can generate high-contrast and high-resolution PA images of hemoglobin and ICG molecules in the human prostate background, whereas US images displayed poor contrast of these fiducial tubes (Fig. 3). Table S2

STANFORD CANCER INSTITUTE

summarizes the key TRUSPA imaging parameters quantified from US and PA signals in Figs. 2 and 3. In Fig. 3 (K to N), we present an example of ex vivo imaging of PCa on surgically removed human prostate obtained from a patient who underwent a radical prostatectomy as a routine standard of care. As shown in Fig. 3M, this patient had a fair amount of disease (1.1 cm, PIRADS 4) in the right lateral peripheral zone (PZ). This prostate was imaged using the TRUSPA device, and the malignant region was specifically targeted during the scanning. As shown in Fig. 3L, the co-registered PA/US image at 800 nm showed the boundary of the tumor mass (white circled region) in the right lateral PZ on the US image (grayscale) and strong PA contrast of ~20 dB, which was not present when scanned through other regions of the prostate. We imaged 20 surgically removed prostates to identify distinct PA features of PCa. Because there was a lot of blood loss from the prostatectomy, it was difficult to distinguish the malignant region in excised human prostates based on intrinsic PA contrast alone [unless the tumor(s) was preidentified on MRI and appeared hypoechoic on US at that location, as in Fig. 3L]. To further evaluate the TRUSPA system SNR as a function of imaging depth and laser wavelength, we imaged an Eppendorf tube of 8 mm diameter filled with ICG solution (1 mg/ml) at different depths (up to 5 cm) inside chicken breast tissue (fig. S9). These results demonstrated a linear decrease $(\sim 10 \text{ dB/cm})$ in the system SNR, $\sim 34 \text{ dB}$ at 18 mm to ~13 dB at 47 mm. The ICG spectral profiles from three different depths (18, 32, and 47 mm) demonstrated a decaying PA signal after 800 nm, similar to the standard ICG molar extinction spectrum. In future, a model-based fluence correction that accounts for depth and wavelength dependence will likely help in achieving higher spectral accuracies at deeper depths from the surface

(beyond 30 mm) needed for robustly quantifying the ICG distribution and perfusion. In addition, the PA contrast beneath the ICG tube in fig. S9 (I and L) was most likely due to blood absorption in the chicken tissue that shows similar PA intensity levels as the ICG tube, because of the higher optical fluence present at lower depths than at the depth of the ICG tube.

In the next step, we studied the in vivo detection of ICG by administering ICG solution (50 µl at 2.5 mg/ml) intravenously into mice (n = 5) bearing subcutaneous PCa (PC3 cells) tumors and performed a simultaneous US and spectroscopic (multiwavelength) PAI

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

Fig. 3. TRUSPA studies on ex vivo intact human prostates after radical prostatectomy. (A) Photograph of a polyethylene fiducial tube (0.8 mm diameter) placed inside the urethra of an excised human prostate. Encircled regions in US (grayscale), PA (red color), and co-registered US + PA images show respective contrasts at 800-nm wavelength from (B to D) a blood-filled tube with a depth of ~2 cm inside the prostate, (E to G) a blood-filled tube placed behind the prostate covering an imaging depth of ~3.5 cm, and (H to J) a tube filled with ICG solution (1 mg/ml) placed behind the prostate. (K) Intact human prostate ex vivo showing the schematic orientation of the TRUSPA device when imaging the PIRADS 4 lesion (encircled region) in the right lateral PZ measuring 1.1 cm in diameter. (L) Co-registered US + PA image of the peripheral lesion (encircled). (M) Preoperative axial T2-weighted 3-T MRI showing low-intensity mass (encircled) in the right lateral PZ. B, bladder; P, prostate; R: rectum. Scale bar, 10 mm. (N) Histological tissue section from the peripheral lesion showing high cell proliferation (Gleason grades 3 and 4) and evidence of vasculature. Scale bar, 50 µm. (O and P) Edge spread functions along the axial and lateral directions of the blood tube in (C) demonstrating resolutions (half the distance of X₁₀₋₉₀) of about 215 and 720 µm, respectively. (Q) Spectral plot of the mean PA intensity of the ICG tube in (I) in the optical wavelength range of 750 to 950 nm, in steps of 25 nm. Scale bars, 10 mm (B to L).

using the TRUSPA device. US images showed the tumor boundary (ROIs; R1, R2, R3, R4, and R5 as defined in Fig. 4O) on multiwaveand other anatomical structures of the mouse, whereas the PA imlength pre- and post-ICG PA images (fig. S10), showed distinct ages (co-registered with the US) showed uptake of ICG dve in the trends, similar to a standard venous blood absorption and a mixture tumor vasculature and inside the tumor region (Fig. 4). Spectral of blood and ICG spectra, respectively (Fig. 4, F to I). Furthermore, plots of pre- and post-ICG imaging, obtained from quantified mean spectral unmixing on the multiwavelength PA data acquired during PA contrast as a function of wavelength for five regions of interests the pre- and the post-ICG injection periods (fig. S10) distinguished

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

STANFORD CANCER INSTITUTE

PA contrast originating from Hb, HbO₂, and the ICG molecules human prostate. Although the tumor region (encircled region) was found (Fig. 4, J to O). This difference in the trends between pre-ICG and to be hypoechoic on US, all PA contrast observed before ICG injection post-ICG was used as one of the benchmarks to evaluate the presence was likely due to absorption of hemoglobin present in the blood of intravenously administered ICG during the TRUSPA imaging of within vasculature of the tumor and surrounding regions. Comparison

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

of image contrast in the encircled tumor region in all unmixed images tional zone (TZ), the anterior zones (AZs) of the prostate (Fig. 5B), (Fig. 4, J to O) shows that ICG dye was taken up and retained inside the seminal vesicles (Fig. 5B), and regions of suspicious hypoechoic the tumor region and surrounding vasculature, with a fourfold mass (Fig. 5C) were identified. In Fig. 6, we present in vivo TRUSPA improvement in the PA contrast after ICG injection. The PA contrast imaging results from a patient with proven PCa as evidenced on and spectral profiles of pre- and post-ICG injection observed at preoperative PET-MRI, using 68Ga-labeled PET tracer targeting of deeper regions (ROI R5 at 35-mm depth shown in fig. S10, A and B) bombesin on the PCa cells (43), and followed by PET-MRI contrastdemonstrates the high optical sensitivity and spectral profiling targeted biopsy (with MRI-TRUS fusion) of the prostate using the capabilities of the TRUSPA device. conventional TRUS device. In agreement with the PET-MRI results, the TRUSPA device displayed a distinct PA contrast from the right **Pilot clinical TRUSPA imaging studies** peripheral base of the prostate, which was not present when scanned With previous approval from the Stanford Institutional Review Board through other prostatic regions of this patient (movie S1).

(IRB), we collected in vivo transrectal images of human prostates The final imaging experiments involved contrast-enhanced (n = 20) in US and PA modes of the TRUSPA device, including 10 TRUSPA imaging of human prostates using intravenous ICG subjects who received intravenous ICG during the TRUSPA imag-(2.5 mg/ml) in the dose range of 5 to 75 mg (n = 10; table S3). ing of the prostate. In vivo results demonstrated the capability of the In Fig. 7, we present in vivo TRUSPA prostate imaging results device to simultaneously display anatomical information on the US, after intravenous ICG (25-mg dose) in a patient with biopsyfunctional and molecular information on PA, and co-registered US + proven cancer in the left peripheral base of the prostate. To better PA images of the prostate in real time at 10 fps (movie S1). The US evaluate the nature of ICG time activity, we applied principal comimages from the TRUSPA provided the sagittal anatomy of the ponents analysis (PCA) on the mean PA values of the 60-grid ROIs prostate and surrounding tissue to a ~6-cm depth from the rectal (fig. S11B) defined on each 800-nm PA image acquired during prewall with the $\pm 20^{\circ}$ field of view (FOV) (Fig. 5). From the PA images and post-ICG injection period. The coefficient of the first PCA that alone, the origin of optical contrast within the prostate remained accounts for 83% of the total variance in PA contrast as a function unclear. However, the co-registered US + PA images, with overlaid of time (relative to ICG injection) showed the time-activity curve anatomical and PA contrasts of prostate, demonstrated high PA with an average ICG arrival time of about 2.5 min and washout time contrast from dense vasculature adjacent to several prostatic strucof about 6 min after ICG injection, except from the left base of the prostate (Fig. 7G and fig. S11J). These plots also show that the time tures. Neurovascular bundles in the posterior region (Fig. 5A), the dorsal venous complex that spans the prostate capsule, PZ, transiactivity is relatively higher in the left base of the prostate (having

Fig. 5. In vivo TRUSPA imaging of human prostate. Each TRUSPA frame in (A) to (C) consists of US, PA, and co-registered US + PA images of human prostate. Scale bars, 10 mm. Prostate (P), rectum (R), bladder (B), urethra (U), peripheral zone (PZ), transition zone (TZ), seminal vesicle (SV), neurovascular bundle (NVB), anterior fibromuscular stroma (AFS), dorsal vascular complex (DVC), levator ani fascia (LAF), and parietal endopelvic fascia (PEF) were identified in these images. (A) PA contrast from the NVB (~20 mm depth) in the posterior PZ. (B) PA contrast from vasculature structures surrounding SV (~15 mm depth) and from DVC (~40 mm depth) that spans AFS, TZ, and PZ that is connected to the bladder neck. (C) PA contrast from a suspicious (white arrow) hypoechoic mass in the PZ in the left base of the prostate.

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

STANFORD CANCER INSTITUTE

malignant region covered by ROIs 13 to 18 and 24 to 26) with 20% increase in the intraprostatic PA contrast after ICG injection. In addition, the spectral plots of mean PA contrast versus wavelength (Fig. 7H), using multiwavelength (750 to 950 nm, 25-nm step size) PA data acquired before and after intravenous ICG injection (fig. S12), showed different trends for pre- and post-ICG imaging, consistent with intravenous ICG results on mice models of PCa (Fig. 4). To further validate the presence of ICG within the prostate, we performed spectral unmixing of ICG from the Hb and HbO₂ using the multiwavelength PA data (fig. S12). The unmixed post-ICG image showed a distinct PA contrast with ~10% contrast enhancement from the left base of the prostate at peak ICG arrival time, with respect to the unmixed pre-ICG image (Fig. 7, I and J). A null hypothesis test on the contrast change between postand pre-ICG unmixed images, defined as the ICG slope, of seven patients who underwent intravenous ICG (25 to 75 mg) resulted in statistically significant changes (P = 0.009) (Table 1). The ICG slope trend is like that of unmixed 800-nm image slope (the peak absorption wavelength of ICG) with P = 0.578, but not to that of unmixed 950-nm slope with

Fig. 6. In vivo multimodal PET, MRI, TRUS, and TRUSPA imaging of the prostate in a patient with PCa. In all images, the rectum (R), rectal wall (RW), bladder (B), anterior fibromuscular stroma (AFS), and prostate (P; green contour) are labeled. (A to C) Ultrasound (US) in grayscale, PA in red color scale, and co-registered US + PA images of human prostate obtained in vivo with the TRUSPA device. Movie S1 shows real-time TRUSPA imaging of this patient, which involved linear and rotational movements of the device in the rectum to scan different regions of the prostate. The suspicious region with distinct PA contrast [yellow contour in (A) to (C)] in the right base was repeatedly visited (around 25 to 35 s in the video) during the imaging session. (D) Axial PET imaging showing PCa (yellow contour) using ⁶⁸Ga-labeled radioactive tracer targeting bombesin receptor on the PCa cells. (E) Axial MRI showing anatomical information of the prostate with vellow contour covering the extent of PCa identified using PET molecular imaging. The TRUSPA FOV shown in (A) to (C) is also marked on the MRI (blue-shaded triangular region). (F) Axial TRUS image showing targeted region (yellow contour) for biopsy using the data from both MRI and PET; targeted biopsy confirmed PCa. (G) Final histopathology from the prostatectomy showing areas of hypervascularity (arrows) within the tumor. Scale bar, 10 mm.

P = 0.110 due to negligible absorption of ICG at 900-nm wavelength. Average percentage increases of 36 ± 22 for the 800-nm measurement and 9 \pm 6.5 for unmixed ICG measurements were calculated (n = 7patients). Furthermore, we observed a greater ICG contrast for patients with higher ICG doses of up to 75 mg (fig. S13). For the patient with the 5-mg dose, we observed negligible time activity of ICG and contrast improvement in the unmixed ICG image (fig. S14).

DISCUSSION

We report the development and the initial clinical use of an integrated TRUSPA device capable of simultaneously imaging US-based prostatic anatomy and PA-based functional and molecular optical contrasts in human subjects. Compact bonding of the CMUT array to the ASICs not only improved the noise floor but also provided enough room around the array to optimally distribute fiber optic cables for delivering light deep into the prostate from different angles. High receive sensitivity and near 100% fractional bandwidth of the CMUTs (31-36) further contributed to the high PA sensitivity observed in our TRUSPA experiments. A compact TRUSPA architecture that tightly integrates both optical and ultrasonic components is required given the space constraints for transrectal imaging of the prostate. Deep prostate PAI is not easily achieved by attaching a fiber optic light guide to the existing clinical TRUS devices that use lead zirconate titanate (PZT) arrays. Our approach overcame challenges such as lower depth and molecular sensitivity of previous PAI studies (26-28) and demonstrated multispectral imaging of intrinsic and extrinsic molecular PA contrast in the range of 3 to 4 cm inside the human prostate. Wider FOV and finer structural details seen on clinical TRUS devices (due to large aperture size, higher number of elements, and higher center

STANFORD CANCER INSTITUTE

frequency of curvilinear PZT array) can be extended to future TRUSPA designs by using a linear/curvilinear CMUT array of comparable parameters (31-33). Furthermore, highly sensitive and large 2D (matrix) CMUT arrays could be implemented for real-time 3D imaging of prostate, covering both sagittal and axial views at the same time.

In pilot clinical studies involving several patients, the real-time co-registration of US and PA images allowed simultaneous mapping of local optical absorption of hemoglobin contrast in PA images to several prostatic structures identified on US images, such as seminal vesicles, neurovascular bundles, dorsal venous complex, and prostate capsule. Although contrast-enhanced ultrasonic techniques such as Doppler US are capable of indirectly mapping blood vessels, these techniques based on blood flow velocity have poor spatial resolution and lower sensitivity compared to PAI, which has demonstrated high sensitivity to detect single blood cells (44). For one patient with advanced PCa, TRUSPA demonstrated a distinct intrinsic PA contrast from the malignant region of the prostate,

confirmed by simultaneous PET-MRI and subsequent targeted biopsy results. We also studied ICG contrast-enhanced prostate imaging as the best possible first clinical step toward understanding the extrinsic molecular PA sensitivity of TRUSPA in humans. Using plots of time activity (PA contrast at 800 nm versus time), multispectral analysis (PA contrast versus wavelength), and spectrally unmixed ICG imaging, we observed dose-dependent (up to 75 mg total at 2.5 mg/ml) PA contrast enhancement of prostate. Comparison of spectrally unmixed images of Hb, HbO₂, and ICG in clinical and preclinical studies showed that the origin of the PA contrast in ICG images can be attributed to vascular space, because ICG rapidly binds to plasma proteins in the vasculature (45-47). Although the ICG activity and contrast in the tumor region (left base) is distinct compared to other regions (apex and anterior) for the patient case presented in Fig. 7, because of increased blood flow to prostate tumors than surroundings (48), future studies on a large number of patients with different types and grades of PCa would further help to elucidate the differential uptake of ICG in the malignant region. The maximum (75 mg) dose of ICG used in this study is well below the clinically permissible (2 mg/kg) and the highest dose previously injected (5 mg/kg) with no toxicity in humans (49-52). For further comparison, this dose is also quite lower than the average dose (10 mg/kg) of MRI contrast agents in humans (10, 53). Although increasing the ICG dose would further enhance the intraprostatic contrast and spectral ICG results, PA molecular imaging approaches that specifically target PCa biomarkers such as bombesin and prostate-specific membrane antigen (PSMA) (11, 18, 43), when integrated into the TRUSPA device, could improve the specificity of targeted biopsy and the ability to predict the prognosis and help induce focal therapy. There is a high potential for further improving the molecular sensitivity and depth of penetration

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

Fig. 7. Contrast-enhanced TRUSPA imaging of human prostate using intravenous ICG. A 53-year-old patient was diagnosed with PCa based on elevated PSA (5.33 ng/ml) and TRUS-guided biopsy showing Gleason 3 + 3 cancer in the left base of the prostate. Bladder (B), rectum (R), and prostate (P, green contour) are marked. (A) Diffusionweighted MRI showing the malignancy (red contour) in the left PZ of the prostate. (B) Sagittal TRUS showing the MRIbased fused malignant (red) and control (yellow) regions used for the targeted biopsy. (C) Sagittal view of the 3D volume rendered patient's prostate based on MRI. Also shown is the schematic FOV of the TRUSPA device when imaging the peripheral lesion outlined in red in the left base with intravenous ICG (25 mg; 10 ml at 2.5 mg/ml). (D) Pre-ICG, (E) 2-min post-ICG, and (F) 6-min post-ICG images showing US (grayscale), PA (red), and co-registered US + PA images of the prostate. (G) Coefficient of first PCA, discussed in detail in fig. S11, plotted as a function of time relative to ICG injection. (H) Mean PA intensity in RO1 and RO2 as a function of wavelength plotted for pre- and post-ICG imaging periods. Spectrally unmixed ICG image (I) before and (J) after injecting ICG. (K) Pathology from prostatectomy showing a Gleason 3 + 4 cancer with extraprostatic extension and no cancer in lymph nodes, staged pt3aN0. Scale bars, 10 mm (A to F, I, and J). Yellow stickers on the red contour that surrounds the tumor region inside the tissue specimen show the dimensions 15.99 mm \times 9.92 mm marked by the pathologist. (L) Magnification of a region inside the tumor outlined by red contour in (K). Scale bars, 1 mm (K) and 100 μm (L).

(beyond 5 cm) of TRUSPA using a suitable combination of the following approaches: clinically translatable small molecules or nanoparticles with higher PA contrast than ICG (54), a modelbased fluence correction for better spectral accuracy (55, 56),

intravenous ICG). More than 50% of cases had unknown cancer status, as their first TRUS-guided biopsy was performed after the TRUSPA imaging. Future clinical studies will image a large cohort of patient subjects with clinically relevant and insignificant PCa to further understand the diagnostic usefulness of TRUSPA measurements using robust statistical analysis. Second, the pathology results and the corresponding TRUSPA images of a patient might not be Our present pilot clinical study has some limitations. First, we completely matched. However, given that the major pathological findings did not change from specimen to specimen within the tumor

using more sensitive and larger CMUT (or other ultrasonic) arrays, advanced beamforming techniques such as spatial compounding (57), increasing light throughput from the current fluence of $\sim 10 \text{ mJ/cm}^2$ to the ANSI safety allowing fluence of 30 mJ/cm² at 800 nm or 100 mJ/cm² at 1064 nm (41), and delivering light through the urethra (58). The effect of motion artifacts on the PA and US image quantitation using our TRUSPA probe will be also characterized in future studies. imaged a small number of patients (n = 20; 10 without and 10 with

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

10 mn

STANFORD CANCER INSTITUTE

Table 1. Statistical analysis on seven patients who received intravenous ICG during the TRUSPA imaging. Slopes for change in the mean signal of the entire prostatic region between pre- and post-ICG injection for the measurements 800 nm (peak absorption of ICG), 950 nm (very low absorption of ICG), and unmixed ICG. Total of n = 70measurements adjusted for dose and clustering within patient were used in the analysis. The fourth column "is slope = 0?" provides the probability for no change in signal difference between respective pre- and post-measures, and the fifth column "is slope = ICG slope?" provides the probability that the slope of a certain measurement (800 or 950 nm) follows the ICG slope.

Slope measure	Slope estimate	95% confidence interval for the estimated slope	Slope = 0? P	Slope = ICG slope? P
800 nm	3.5	-1.7 to 8.8	0.152	0.578
950 nm	0.9	-3.5 to 5.2	0.639	0.110
Unmixed ICG	4.9	1.8 to 8.1	0.009	

core region, our data suggest that the TRUSPA results can still be correlated to pathology results. Third, the maximum intravenous ICG dose is intentionally kept very well below the FDA-approved limits in these pilot studies, which limited the TRUSPA capabilities to further enhance intraprostatic PA contrast from vasculature structures and tumor regions. Fourth, the number of elements in the TRUSPA transducer and data acquisition system is also suboptimal compared to the conventional clinical TRUS machines. A current limitation of the CMUT technology is that they emit lower pressure compared to conventional PZT transducers. This is a result of the low inertia of the plate (thin plate, low mass) and can be further improved by optimizing CMUT cell design, such as incorporating a bump in the cavity (28). Despite these limitations, this study shows the possibility of using multispectral PAI to distinguish between endogenous (vascular) and exogenous (ICG) optical contrasts in the prostate, including potentially from the tumor region.

The TRUSPA system demonstrated here simultaneously unites PA-based molecular optical contrast with anatomical US of the prostate. The CMUT technology is a considerable improvement upon PZT-based systems for endoscopic PAI and displays potential for real-time 3D imaging of human prostate. In sharp contrast to limited information obtained from clinical TRUS, TRUSPA is capable of displaying vascular, functional, and biomarker-targeted molecular images of the disease and offers potential for new diagnostic and prognostic insights into PCa screening and management. Such a multiparametric TRUSPA system, combining all possible contrasts of conventional US, as well as PAI, has high potential to differentiate clinically relevant and insignificant PCa cancers, replace/reduce random biopsies with targeted biopsies, and help select suitable treatment options. In addition, TRUSPA can be easily integrated into the standard TRUS workflow in a urology clinic and could provide an attractive cost-effective alternative imaging platform to relatively expensive MRI and PET.

MATERIALS AND METHODS

Study design

The objectives of this prospective study were to develop, validate, and then clinically translate the TRUSPA device that uses miniaturized

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

STANFORD CANCER INSTITUTE

CMUTs for human prostate imaging, and primarily investigate the intraprostatic PA contrast without and with the use of intravenous ICG injection in humans. The first set of validations studies was designed to test the deep-tissue imaging capabilities of the device using different tissue-mimicking phantoms as well as surgically removed intact human prostates (n = 20) from patients who underwent radical prostatectomy as a routine standard of care. In the next step, using mouse models of PCa (n = 5), the intravenous ICG imaging capabilities of the device were tested. These mouse studies were also designed to help test our quantitative spectral plotting and spectral unmixing methods using pre- and post-ICG injection multispectral PA data. The pilot clinical studies involving patients with PCa (n = 20; in which n = 10 with intravenous ICG) were designed to test the ability of the device to simultaneously image anatomical and vascular (including vascular perfusion) contrasts of the prostate in the US and PA modes of the device, respectively. The results of our initial trial are presented here as a feasibility study. The other study designs, along with methods, are provided in the following sections. All experiments involving humans and animals were approved by the IRB and Administrative Panel on Laboratory Animal Care, respectively, of the Stanford University. Informed consent was obtained from all participating patients.

Mouse PCa models

About 5 million PC3 cells [American Type Culture Collection (ATCC)] transfected with a lentivirus expressing both a green fluorescent protein (eGFP) and bioluminescent reporter gene Luciferase (Luc2) were implanted subcutaneously in the lower back of nude male mice (n = 5). Tumors were allowed to grow to a size of 50 to 1000 mm³ over about 3 weeks. Tumor growth and activity were monitored using bioluminescence imaging acquired by an IVIS 200 after intraperitoneal administration of substrate D-luciferin at a dose of 150 mg/kg (Biosynth).

In vivo transrectal imaging of human prostate without and with intravenous ICG

Patients with PCa with elevated serum PSA were first imaged with the TRUSPA device immediately before routine TRUS-guided biopsy procedure. Among the 20 patients we imaged, 10 without ICG and 10 with intravenous ICG (IC-Green, Akorn), only 5 patients had biopsy-proven PCa before the TRUSPA imaging. Hence, more than 50% of the patients we imaged had their first prostate biopsy after our TRUSPA studies, and their cancer status was not known during the TRUSPA study. As in conventional TRUS, the TRUSPA device was inserted into each patient's rectum and the prostate was visualized first in the US mode before starting the laser illumination for subsequent PA image acquisition. The device was linearly moved and/or rotated to visualize different regions of the prostate and surrounding structures such as the bladder at the urologist's discretion. Frame grabber software (Camtasia) recorded the video of timelapse TRUSPA frames (each frame consisting of a US, PA, and a co-registered US + PA image) displayed on the computer screen. Raw US and PA data were saved for ROIs identified by the urologist and reconstructed using the delay-and-sum beamforming (59). Among the 10 ICG patients, the ICG dose was gradually increased from 5 mg (1 patient), 25 mg (2 patients), 50 mg (2 patients), to 75 mg (5 patients). The TRUSPA device was directed toward an ROI in the prostate, based on patient's preoperative MRI results, and was held still throughout the pre- and post-ICG imaging. To study the time activity of ICG (arrival and washing out) inside the prostate,

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

we acquired TRUSPA frames of 800 nm (the peak absorption wavelength of the ICG molecule) at multiple time points during the preand post-ICG sessions. To further study the presence of ICG inside the prostate—using the spectral plots and the spectral unmixing of oxyhemoglobin, deoxyhemoglobin, and ICG-we acquired multiwavelength PA images from 750 to 950 nm in steps of 25 nm during the pre- and post-ICG time periods. The complete procedure took about 10 min.

PA data thresholding, time gain compensation, and spectral unmixing Thresholding

The TRUSPA system SNR was studied under multiple imaging conditions including with laser ON and laser OFF conditions to understand inherent system-level noise. Our calculations showed that PA signal from a typical target in the laser ON image is more than 10 dB than the noise in the laser OFF image. We then studied the amount of noise in all our imaging conditions (phantoms, ex vivo tissue specimens, mice, and human studies) and applied thresholding on all PA images to bring them to an acceptable SNR of greater than 3 dB. Time gain compensation settings

Depth-dependent time gain compensation (TGC) settings were applied for both US and PAI to compensate for the decrease in respective signal strengths with an increase in tissue depth.

Spectral unmixing

A nonnegative constraint-based linear spectral unmixing approach (60) was applied on multiwavelength PAI data that is compensated for variations in the laser output fluence as a function of wavelength, in addition to the thresholding and TGC as discussed above.

Statistical analysis of ICG patients

Intraprostatic ICG activity was analyzed using pre- and post-ICG PA measurements in 7 of 10 patients. Three patients were excluded: one patient with 5-mg ICG dose with negligible pre- and post-ICG difference, and two patients with high movement during the imaging. The five mean PA measurements of prostate used for the statistical analysis were as follows: (i) 800 nm at which ICG absorption is maximum; (ii) 950 nm with minimal absorption of ICG; and unmixed images of (iii) ICG, (iv) oxyhemoglobin (HbO₂), and (v) deoxyhemoglobin (Hb). The statistical analysis was performed on the difference (slope) between these respective pre- and post-injection measurements. Table 1 presents slopes (positive if increase, negative if decrease) of 800 nm, 950 nm, and unmixed ICG measurements. A total of n = 70 measurements adjusted for dose and clustering within patients (n = 7) were used in the analysis of Table 1. Two null hypotheses were tested. One null hypothesis, "is slope = 0?", provides the *P* value for no change in signal difference between respective pre- and post-measures; the other null hypothesis, "is slope = ICG slope?", provides the *P* value for the slope of a certain measurement (800 or 950 nm) following the ICG slope.

SUPPLEMENTARY MATERIALS

stm.sciencemag.org/cgi/content/full/11/507/eaav2169/DC1

- Materials and Methods
- Fig. S1. Description of the TRUSPA imaging system next to the patient bed in the urology clinic. Fig. S2. Schematics and images that describe the TRUSPA device, operating principle, and its
- data acquisition
- Fig. S3. Images of the CMUT array and ASIC.

Fig. S4. Simulated output pressure of a CMUT cell and experimental impedance measurements of a single CMUT element

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

- Fig. S5. Design and characterization of PDMS lens on the CMUT array
- Fig. S6. Time sequence used for simultaneous US and PAI of the TRUSPA device.
- Fig. S7. Characterizing the US field of the TRUSPA device using simulations and experiments.

STANFORD CANCER INSTITUTE

- Fig. S8. Output pressure of the TRUSPA device, recorded by hydrophone in immersion, as a function of different DC and AC bias voltage settings.
- Fig. S9. Characterization of TRUSPA system SNR as a function of depth and wavelength.
- Fig. S10. Multiwavelength PA images of the mouse prostate tumor imaged with intravenous ICG Fig. S11. Multi-ROI time activity of ICG for the patient case presented in Fig. 7.
- Fig. S12. Multiwavelength PA images of human prostate for the patient case presented in Fia 7
- Fig. S13. Analysis of ICG activity during in vivo TRUSPA imaging of a human patient with PCa intravenously administered 75 mg of ICG at a concentration of 2.5 mg/ml.
- Fig. S14. Analysis of ICG activity during in vivo TRUSPA imaging of a human patient with PCa intravenously administered 5 mg of ICG at a concentration of 2.5 mg/ml.
- Table S1 1D (linear) CMUT array parameters
- Table S2. Typical deep-tissue imaging parameters of the TRUSPA device.
- Table S3. Intravenous ICG dose given to 10 human subjects at a concentration of 2.5 mg/ml. Movie S1. In vivo TRUSPA imaging of human prostate in clinic (without administering contrast agent).

REFERENCES AND NOTES

- 1. J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).
- 2. F. H. Schröder, J. Hugosson, M. J. Roobol, T. L. J. Tammela, S. Ciatto, V. Nelen, M. Kwiatkowski, M. Lujan, H. Lilja, M. Zappa, L. J. Denis, F. Recker, A. Berenguer, L. Määttänen, C. H. Bangma, G. Aus, A. Villers, X. Rebillard, T. van der Kwast, B. G. Blijenberg, S. M. Moss, H. J. de Koning, A. Auvinen; ERSPC Investigators, Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320-1328 (2009).
- 3. C. E. Barbieri, S. C. Baca, M. S. Lawrence, F. Demichelis, M. Blattner, J.-P. Theurillat, T. A. White, P. Stojanov, E. Van Allen, N. Stransky, E. Nickerson, S.-S. Chae, G. Boysen, D Auclair B C Onofrio K Park N Kitabayashi T Y MacDonald K Sheikh T Vuong C. Guiducci, K. Cibulskis, A. Sivachenko, S. L. Carter, G. Saksena, D. Voet, W. M. Hussain, A. H. Ramos, W. Winckler, M. C. Redman, K. Ardlie, A. K. Tewari, J. M. Mosquera, N. Rupp, P. J. Wild, H. Moch, C. Morrissev, P. S. Nelson, P. W. Kantoff, S. B. Gabriel, T. R. Golub, M. Meyerson, E. S. Lander, G. Getz, M. A. Rubin, L. A. Garraway, Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44 685-689 (2012)
- 4. G. M. Cann, Z. G. Gulzar, S. Cooper, R. Li, S. Luo, M. Tat, S. Stuart, G. Schroth, S. Srinivas, M. Ronaghi, J. D. Brooks, A. H. Talasaz, mRNA-Seg of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLOS ONE 7, e49144 (2012).
- 5. S. A. Tomlins, J. R. Dav, R. J. Lonigro, D. H. Hovelson, J. Siddigui, L. P. Kuniu, R. L. Dunn, S. Meyer, P. Hodge, J. Groskopf, J. T. Wei, A. M. Chinnaiyan, Urine TMPRSS2: ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70, 45-53 (2016).
- 6. M. L. Palmeri, T. J. Glass, Z. A. Miller, S. J. Rosenzweig, A. Buck, T. J. Polascik, R. T. Gupta, A. F. Brown, J. Madden, K. R. Nightingale, Identifying clinically significant prostate cancers using 3-D in vivo acoustic radiation force impulse imaging with whole-mount histology validation. Ultrasound Med. Biol. 42, 1251-1262 (2016)
- 7. S. Li, J. Kim, Z. Wang, X. Jiang, S. Kasoji, B. Lindsey, P. A. Dayton, A 3 MHz/18 MHz dual-layer co-linear array for transrectal acoustic angiography, in IEEE International Ultrasonics Symposium (IEEE, 2015).
- 8. Y. Chen, M. Nguyen, J. T. Yen, A 5-MHz cylindrical dual-layer transducer array for 3-D transrectal ultrasound imaging. Ultrason. Imaging 34, 181–195 (2012).
- 9. M. Gavet, A. van der Aa, H. P. Beerlage, B. P. Schrier, P. F. A. Mulders, H. Wijkstra, The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: A systematic review. BJU Int. 117, 392-400 (2016).
- 10. S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Z. Larson, A. L. Harzstark, M. Ferrone, M. van Criekinge, J. W. Chang, R. Bok, I. Park, G. Reed, Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C] pyruvate. Sci. Transl. Med. 5, 198ra108 (2013).
- 11. A. Afshar-Oromieh, C. M. Zechmann, A. Malcher, M. Eder, M. Eisenhut, H. G. Linhart, T. Holland-Letz, B. A. Hadaschik, F. L. Giesel, J. Debus, U. Haberkorn, Comparison of PET imaging with a ⁶⁸Ga-labelled PSMA ligand and ¹⁸F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 41, 11-20 (2014).
- 12. Y. Zhou, D. Wang, Y. Zhang, U. Chitgupi, J. Geng, Y. Wang, Y. Zhang, T. R. Cook, J. Xia, J. F. Lovell, A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging. Theranostics 6, 688–697 (2016).
- 13. L. V. Wang, S. Hu, Photoacoustic tomography: In vivo imaging from organelles to organs. Science 335, 1458-1462 (2012).

STANFORD CANCER INSTITUTE

- 14. V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).
- 15. E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54, 1035–1046 (2009).
- 16. D. R. Bauer, R. Olafsson, L. G. Montilla, R. S. Witte, 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber. J. Biomed. Opt. **16**, 026012 (2011).
- 17. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, S. S. Gambhir, Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557-562 (2008)
- 18. J. Levi, A. Sathirachinda, S. S. Gambhir, A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. *Clin. Cancer Res.* 20. 3721-3729 (2014)
- 19 M Heijblom D Piras W Xia, I C G Van Hespen, I M Klaase F M van den Engh T. G. van Leeuwen, W. Steenbergen, S. Manohar, Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements? Opt. Express 20, 11582-11597 (2012).
- 20. A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, L. V. Wang, Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer. Sci. Rep. 5, 15748 (2015).
- 21. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14, 024007 (2009).
- 22. P. D. Kumavor, U. Algasemi, B. Tavakoli, H. Li, Y. Yang, X. Sun, E. Warych, Q. Zhu, Co-registered pulse-echo/photoacoustic transvaginal probe for real time imaging of ovarian tissue. J. Biophotonics 6, 475-484 (2013).
- 23. X. Wang, W. W. Roberts, P. L. Carson, D. P. Wood, J. B. Fowlkes, Photoacoustic tomography: A potential new tool for prostate cancer. Biomed. Opt. Express 1, 1117–1126 (2010)
- 24. M. A. Yaseen, S. A. Ermilov, H.-P. F. Brecht, R. Su, A. Conjusteau, M. P. Fronheiser, B. A. Bell, M. Motamedi, A. A. Oraevsky, Optoacoustic imaging of the prostate: Development toward image-guided biopsy. J. Biomed. Opt. 15. 021310 (2010).
- 25. M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, E. M. Boctor, In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging. J. Biomed. Opt. 19. 126011 (2014)
- 26. A Horiguchi K Tsujita K Irisawa T Kasamatsu K Hirota M Kawaguchi M Shinchi K Ito T. Asano, H. Shinmoto, H. Tsuda, A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy. Prostate 76, 307-315 (2016).
- 27. A. Horiguchi, M. Shinchi, A. Nakamura, T. Wada, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, M. Ishihara, Pilot study of prostate cancer angiogenesis imaging using a photoacoustic imaging system. Urology 108, 212-219 (2017).
- 28. M. Ishihara, A. Horiguchi, H. Shinmoto, H. Tsuda, K. Irisawa, T. Wada, T. Asano, Comparison of transrectal photoacoustic, Doppler, and magnetic resonance imaging for prostate cancer detection. Proc. SPIE 9708, 970852 (2016).
- 29. A. Nikoozadeh, B. Bayram, G. G. Yaralioglu, B. T. Khuri-Yakub, Analytical calculation of collapse voltage of CMUT membrane. IEEE Int. Ultrason. Symp. 1, 256–259 (2004).
- 30. K. K. Park, H. Lee, M. Kupnik, B. T. Khuri-Yakub, Fabrication of capacitive micromachined ultrasonic transducers via local oxidation and direct wafer bonding. J. Microelectromech. Syst. 20, 95-103 (2011).
- 31. M. Engholm, H. Bouzari, T. L. Christiansen, C. Beers, J. P. Bagge, L. N. Moesner, S. E. Diederichsen, M. B. Stuart, J. A. Jensen, E. V. Thomsen, Probe development of CMUT and PZT row-column-addressed 2-D arrays. Sens. Actuat. A Phys. 273, 121-133 (2018)
- 32. M. Vallet, F. Varray, J. Boutet, J.-M. Dinten, G. Caliano, A. S. Savoja, D. Vray, Ouantitative comparison of PZT and CMUT probes for photoacoustic imaging: Experimental validation. Photoacoustics 8, 48-58 (2017).
- 33. O. Warshavski, C. Meynier, N. Sénégond, P. Chatain, J. Rebling, D. Razansky, N. Felix, A Nouven-Dinh Experimental evaluation of cMUT and PZT transducers in receive only mode for photoacoustic imaging, in Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensina (SPIE, 2016).
- 34. P. Cristman, O. Oralkan, X. Zhuang, T.-J. Ma, S. Vaithilingam, T. Carver, I. Wygant, B.T. Khuri-Yakub, A 2D CMUT hydrophone array: Characterization results, in IEEE International Ultrasonics Symposium (IEEE, 2009)
- 35. I. O. Wygant, X. Zhuang, D. Yeh, O. Oralkan, A. S. Ergun, M. Karaman, B. T. Khuri-Yakub, Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 327-342 (2008).
- 36. O. Oralkan, B. Bayram, G. G. Yaralioglu, A. S. Ergun, M. Kupnik, D. T. Yeh, I. O. Wygant, B. T. Khuri-Yakub, Experimental characterization of collapse-mode CMUT operation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1513–1523 (2006).

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

- 37. S.-R. Kothapalli, T.-J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, S. S. Gambhir, Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array. IEEE Trans. Biomed. Eng. 59, 1199–1204 (2012).
- 38. X. Zhuang, A. Nikoozadeh, M. A. Beasley, G. G. Yaralioglu, B. T. Khuri-Yakub, B. L. Pruitt, Biocompatible coatings for CMUTs in a harsh, aqueous environment. J. Micromech. Microeng. **17**, 994–1001 (2007).
- 39. L. V. Wang, R. E. Nordquist, W. R. Chen, Optimal beam size for light delivery to absorption enhanced tumors buried in biological tissues and effect of multiple-beam delivery: A Monte Carlo study. Appl. Optics 36, 8286-8291 (1997).
- 40. J. A. Jensen, Field: A program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34, 351-353 (1996)
- 41. Laser Institute of America, American National Standard for Safe Use of Lasers (American National Standards Institute, Inc., 2000).
- 42. T. Svensson, S. Andersson-Engels, M. Einarsdottir, K. Svanberg, In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J. Biomed. Opt. 12, 014022 (2007).
- 43. R. Minamimoto, S. Hancock, B. Schneider, F. T. Chin, M. Jamali, A. Loening, S. Vasanawala, S. S. Gambhir, A. lagaru, Pilot comparison of ⁶⁸Ga-RM2 PET and ⁶⁸Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J. Nucl. Med. 57, 557–562 (2016)
- 44. C. Zhang, K. Maslov, L. V. Wang, Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt. Lett. 35, 3195–3197 (2010).
- 45. National Center for Biotechnology Information, PubChem Compound Database; https:// pubchem.ncbi.nlm.nih.gov/compound/11967809 [accessed 19 February 2017].
- 46. K. J. Baker, Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma α-1 lipoproteins. Exp. Biol. Med. 122, 957–963 (1966).
- 47. G. R. Cherrick, S. W. Stein, C. M. Leevy, C. S. Davidson, Indocvanine green: Observations ON its physical properties, plasma decay, and hepatic extraction. J. Clin. Invest. 39, 592-600 (1960)
- 48. D. L. Buckley, C. Roberts, G. J. M. Parker, J. P. Logue, C. E. Hutchinson, Prostate cancer: Evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging—Initial experience. Radiology 233, 709–715 (2004).
- 49. J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, P. Välisuo, A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 940585 (2012)
- 50. G. Paumgartner, The handling of indocyanine green by the liver. Schweiz. Med. Wochenschr. **105**, 1–30 (1975).
- 51. P. Probst, G. Paumgartner, H. Caucig, H. Fröhlich, G. Grabner, Studies on clearance and placental transfer of indocvanine green during labor. Clin. Chim. Acta 29, 157–160 (1970).
- 52. Akorn Inc., IC-GREEN (Indocyanine Green for Injection, USP) Product Monograph (Akorn Inc., 2006).
- 53. M. R. Prince, C. Arnoldus, J. K. Frisoli, Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J. Magn. Reson. Imaging 6, 162-166 (1996).
- 54. Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, S. Emelianov, Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 11, 348–354 (2011).
- 55. X. L. Dean-Ben, A. Buehler, V. Ntziachristos, D. Razansky, Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imagina 31, 1922–1928 (2012).
- 56. B. T. Cox, S. R. Arridge, P. C. Beard, Estimating chromophore distributions from multiwavelength photoacoustic images. J. Opt. Soc. Am. A 26, 443-455 (2009).
- 57. H. J. Kang, M. A. L. Bell, X. Guo, E. M. Boctor, Spatial angular compounding of photoacoustic images. IEEE Trans. Med. Imaging 35, 1845-1855 (2016).
- 58. M. A. L. Bell, X. Guo, D. Y. Song, E. M. Boctor, Transurethral light delivery for prostate photoacoustic imaging. J. Biomed. Opt. 20, 036002 (2015).
- 59. S. R. Kothapalli, Simultaneous transrectal ultrasound and photoacoustic human prostate imaging (version 1.0) (Zenodo, 2019); http://doi.org/10.5281/zenodo.3347969.
- 60. C. L. Lawson, R. J. Hanson, Solving Least-Squares Problems (Prentice Hall, 1974), chap. 23, p. 161.

Acknowledgments: We thank J. Rosenberg for the statistical analysis of ICG patient data. We thank laboratory members of S.S.G. and P.T.K.-Y. for their help and discussions. We thank the Stanford Nanofabrication Facility for their support in the fabrication of capacitive micromachined ultrasonic arrays. Part of the TRUSPA integration design and fabrication work was done in the Stanford Nano Shared Facilities (supported by the NSF, ECCS-1542152). We also extend our thanks to the National Semiconductors for their support in the fabrication of ASICs. We thank K. Merkle and his team in the physics machine shop at Stanford for the fabrication of polycarbonate housing of the TRUSPA device. We thank summer undergraduate interns A. Lei and R. Singh for their assistance in some phantom and mice experiments with TRUSPA. We thank laboratory members of J.C.L. for their assistance in experiments with surgically removed prostates. We thank K. Rupnarayan for help with consenting the PCa patients. We thank A. Karanany for assistance with intravenous ICG experiments and J. Schwimmer for help with proofreading the manuscript. Funding: We acknowledge funding

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

support from NCI ICMIC P50CA114747 (S.S.G.), NCI CCNE-T U54 U54CA151459 (S.S.G.), the Canary Foundation (S.S.G.), RO1HL117740 (P.T.K.-Y.), NIBIB-K99EB017729 (S.-R.K.), NIBIB-R00EB017729-04 (S.-R.K.), the Sir Peter Michael Foundation (S.S.G. and S.-R.K.), Philips Medical (S.S.G.), and T32-CA118681 (D.M.H.). This work was supported in part from a grant by Philips Healthcare (S.S.G.). Author contributions: S.S.G. conceived the idea of PAI of the human prostate and supervised the entire bench-to-bedside clinical translation of the project. S.-R.K. designed the integrated TRUSPA device, including the fiber optic cable, the polycarbonate housing, and the PCB cable for CMUT and ASIC bonding: A.N. and P.T.K.-Y. contributed to the PCB design. J.W.C. developed the real-time imaging software on Verasonics platform. S.-R.K. developed the beamforming code for the raw RF data reconstruction used in all the data analysis, the spectral upmixing code, the spectral analysis approach, and the control sequence for synchronizing the laser firing with the data acquisition system, K.K.P. and P.T.K.-Y. designed and fabricated the CMUT array. A.B. and P.T.K.-Y. developed ASICs. S.-R.K., T.E.C., and P.T.K.-Y. designed the PDMS lens mold. S.-R.K. and T.E.C. integrated all components of the TRUSPA device with PDMS encapsulation S-RK, A B, B C L, P C, A N, and A M, performed the characterization of the CMUT arrays, ASICs, and the TRUSPA US field distribution using the hydrophone, S.-R.K. performed Field II simulations and all validation experiments in phantoms mice models of cancer, and surgically removed human prostates. S.-R.K. set up all the in vivo TRUSPA experiments in the urology clinic and assisted in the data acquisition, whereas G.A.S. and L.S. performed transrectal imaging in men using the TRUSPA device and prepared the ICG solutions for intravenous injection. S.-R.K., S.S.G., G.A.S., J.W., J.D.B., J.C.L., and R.F. contributed to the protocols for the patient imaging, D.T. and J.C.L. provided surgically removed human

Kothapalli et al., Sci. Transl. Med. 11, eaav2169 (2019) 28 August 2019

prostates and contributed to the interpretation and analysis. S.-R.K., G.A.S., J.D.B., J.C.L., and S.S.G. interpreted TRUSPA imaging results. I.S. and D.M.H. assisted in the last five ICG experiments, S.-R.K. wrote the main and supplementary manuscripts, and all authors provided comments and suggestions to further improve the clarity of the manuscript. Competing interests: S.S.G. serves on the board of Endra Inc. (a manufacturer of small-animal PA instruments and RF-acoustic instruments), is a founding member, and has stock options. S.S.G. also served as a paid consultant to VisualSonics (a developer of US and PA products) up to late 2017. Data and materials availability: All data associated with this study are present in the paper and/or the Supplementary Materials. The software associated with US and PA beamforming using the raw RF data, and spectral unmixing using the multispectral PA data is available at http://doi.org/10.5281/zenodo.3347969

STANFORD CANCER INSTITUTE

Submitted 25 August 2018 Accepted 26 July 2019 Published 28 August 2019 10.1126/scitranslmed.aav2169

Citation: S.-R. Kothapalli, G. A. Sonn, J. W. Choe, A. Nikoozadeh, A. Bhuyan, K. K. Park, P. Cristman, R. Fan, A. Moini, B. C. Lee, J. Wu, T. E. Carver, D. Trivedi, L. Shiiba. I. Steinberg, D. M. Huland. M. F. Rasmussen, J. C. Liao, J. D. Brooks, P. T. Khuri-Yakub, S. S. Gambhir, Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci. Transl. Med. 11, eaav2169 (2019)

APPRECIATION & ACKNOWLEDGEMENTS

CORPORATE PARTNERS

O'Melveny & Meyers LLP Bonhams Group

BOARD OF DIRECTORS

Michael R. Meyers Malcolm V. Morris Scott Rodde

BOARD OF STRATEGIC ADVISORS

Robert C. Bellas, Jr. Carey A. Cullinane, MD Dean E. Dennis, Esq. Ronald DeKoven, Esq. Chris Ehrlich Ellen I. Fair Douglas Fisher, MD Rob Freelen Ryan Gilbert, Esq. Paul P. Tanico, Esq.

CULINARY ADVISOR

Drew Nieporent

AMBASSADORS

Karen Fraser Andrea Kostanecki Lauren Ridenhour Gabriela Shultz

Contact Information

Walter Menzel Executive Director Walter@PeterMichaelFoundation.org

Jenny Koehler

Event Manager Jenny@PeterMichaelFoundation.org

Kristine Jaeger Marketing & Events Assistant Kristine@PeterMichaelFoundation.org

415.339.0400 www.PeterMichaelFoundation.org

Peter Michael Foundation | 1 Gate Six Road, Ste B201 | Sausalito, CA 94965 Federal Tax ID 94-3238961 | © Peter Michael Foundation 2020